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Flexural Vibration of Gravity-Stabilized,
Structurally Damped, Large Flexible Satellites

Shashi K. Shrivastava* and Prashanta K. Maharanat
Indian Institute of Science, Bangalore, India

The stability and response of the in-plane flexural motion of gravity-stabilized, structurally damped, large
flexible satellites in circular and eccentric orbits are analyzed. Employing the method of strained parameters, the
stability analysis shows that the critical damping is sensitive to the satellite inertia ratio. It is noted that the or-
bital eccentricity excites motion in several high and low frequencies and generally decreases the stability of the
system. An analytical expression for flexural response is obtained using the multiple-scales technique. Finally,
stability charts and response are presented for a range of the system parameters.

aN,b

Nomenclature
= modal amplitude of each mode
=Mh perturbation in 47
= constants of motion; bar indicates complex

conjugate
= nondimensional disturbance parameter in

pitch
= orbital eccentricity
= moments of inertia about principal axes x,

' '
7
.K,Kj' = (Iy-Ix)/Iz and VS ,̂ respectively
M = modal mass
p = modal frequency, nondimensionalized with

respect to mean orbital rate
PN>PNe =Nih perturbation in p for circular and

elliptic orbit, respectively
R;Rx,Ry,Rz = distance of the Earth's center to the satellite

mass center; its components
= time
= modal damping factor, critical damping
= true anamoly
= pitch angle, initial pitch
= components of body angular rate

Dots and primes indicate differentiation with respect to / and
0(orr), respectively.

Introduction

DURING the past 15 years there has been an increasing
trend toward building very large flexible spacecraft.

Associated with this trend has been the generation of a
massive literature on the dynamics and control of flexible
systems. The early work on the subject is well surveyed by
Modi.1 Most of the studies idealize the system as an assem-
blage of rigid bodies or a rigid body with flexible appendages.
For many systems of the future, these idealizations may not
be adequate. One would have to treat the entire system as
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elastic. Several approaches are now available to derive
continuum models of large discrete structures.2'3 Treating the
system as an elastic continuum, this paper deals with in-plane
flexural vibation of a large gravity-stabilized, structurally
damped, flexible spacecraft undergoing pitch motion.

In an early study relevant to the present work, Chobotov4

shows that the transverse and axial oscillations of a cable-
connected system are represented by the Mathieu equation
and that the stability criterion is a function of the cable
frequency, orbital rate, and structural damping. Numerical
solution5 of the system indicates that structural damping is
responsible for gradually, but very slowly, reducing the spin
rate. Investigating the longitudinal and in-plane flexural
vibrations of a beam-like satellite undergoing pitching
oscillations, Ashley6 concludes that the influence of in-
finitesimally small deformations on the moments of inertia is
negligible for flexural vibration, but not for longitudinal
vibrations. Modi and Brereton7 derive modal equation for in-
plane flexural vibrations of a flexible boom under solar
heating and study the librational stability through numerical
simulation. In a recent investigation, Kumar and Bainum8 use
the Mathieu stability charts and phase plane methods to assess
stability of undamped in-plane flexural motion in circular
orbit. Although their study succeeds in describing the gross
behavior, it does not fully reveal the important effects of
system parameters. In the present paper, an attempt is made
to find analytical expressions leading to the stability con-
ditions and response of the in-plane flexural motion of
damped gravity-stabilized systems in circular as well as elliptic
orbits. Using analytical solution for rigid-body modes and
modal analysis, the equation of elastic motion are reduced to
a set of linear equations with time-varying coefficients. They
are analyzed for stability by application of the method of
strained parameters. The resulting algebraic expressions show
that the critical damping is sensitive to the vehicle inertia
ratio. It is also noted that the oribtal eccentricity gives rise to
both higher and lower frequency resonances. The stable
response obtained using the multiple-scales technique is
verified with the numerical solution of the equations of
motion. The presentation includes stability charts in
parametric space that should be useful to designers.

The present study complements work by the same authors
on the stability of flexural and longitudinal vibrations of
beam- and plate-shaped satellites in a torque-free en-
vironment.9 This analysis is applicable to a number of
satellite configurations, such as the gravity-stabilized solar
power satellite,10 geosynchronous passive communicator11

etc.
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Analysis
The equations of motion of a flexible spacecraft modeled as

an elastic continuum describing the orbital, attitude, and
structural motions have been derived following the Newton-
Euler approach by several authors.6'8'12 For an elastic
spacecraft moving around the spherical Earth under the
influence of gravitational forces only, these equations of
attitude and structural motion can be written as

(Ix+A2
1M)ux+(Iz-Iy+A2

]M)uyuz

= 3& [RyRz (Iz-Iy +A]M) IR2 ] -2o)xA]A]M

= 3122 [RxRy (Iy-Ix -A]M) IR2 ] -

]=0 (1)

where ft2 = GME/R3 in which G is the gravitational constant
and ME the mass of the Earth.

The last equation describes the flexural vibration in the
orbital plane for any one mode, as there exists little coupling
among the modes. Since both structural and attitude motion
have negligible effects on the orbital motion, it is decoupled
and described by the Keplarian relation. Equation (1) clearly
indicates that the effect of vibration on the vehicle moment of
inertia is of second order and the equations are decoupled
when this effect is neglected. Both Refs. 6 and 8 conclude that
this is indeed the case when the entire system undergoes
flexural vibrations. A number of studies on rigid-body
dynamics of gravity-stabilized systems also indicate that the
pitch motion is the most important one and that it can occur
decoupled from roll and yaw motion. Therefore, considering
planar motion only, the equations of pitch librations and
flexural motion reduce to

(2a)

(2b)

Figure 1 schematically shows these motions for an arbitrarily
shaped, large flexible satellite. It may be noted that Eqs. (2)
are also applicable to multimode vibration because modal
coupling is negligible. Equation (2a) can be solved for the
given orbit and vehicle inertia ratio. In the sequel, stability
and response of the flexural vibration described by Eq. (2b) is
studied. It is observed that it is a linear damped time-varying
system whose closed-form solution is not easily obtainable.

Flexural Stability in Circular Orbit
For small pitching oscillations of the gravity-stabilized

space systems in circular orbit, Eq. (2a) reduces to a simple
harmonic equation that can be solved to give

= dj snr (3)

where

dl = ( 02
10 + 0;0

2/3K) l/2 and d2 = tan j /O']0 )

Substitution of Eq. (3) into Eq. (2b) yields, after a change
of variable from 6 to r

(2fr/K])dA]/dT+[2Kp2-(l+K)c2

-4KccosT+(l-K)c2cos(2T)]Aj/6K2 = 0 (4)

It may be noted that Eq. (4) is a little different from that
derived in Ref. 8. In Ref. 8, the contribution from 0j is
retained but that from sin207 is neglected, although both are
of the same order. The results obtained, therfore, may not be
quite correct. Equation (4), which represents the in-plane
flexural vibration of a gravity-stabilized spacecraft with an
initial pitch disturbance c, is a linear second-order differential
equation with periodic coefficients. Stability of systems
governed by this Whittakar equation can be established by
direct application of the Floquet theory. However, this calls
for extensive computation.

A common practice is to study stability under a small
disturbance. The method of strained parameters, one of
several perturbation techniques,13 is an efficient approach to
establish stability of the present system. The method requires
expansion of the solution and the system frequency in a power
series of the perturbative parameter. The coefficients are
determined by eliminating secular terms. In practice, it is
sufficient to truncate the series to the second-order term.
Accordingly, the following expansions are assumed for the
subsequent analysis:

A1=A10 + cA1]+c2A12

p2/3K-(l+K)c2/6K2=p2
0

or
[p2 + (/ +K) /6K2]c2/2p0 for p0 *0

(5)

Granted that these expansions are valid, one is interested in
the effects of a small amount of structural damping i.e., the
first-order damping represented by f = ̂ c.

Substituting Eq. (5) into Eq. (4) and equating the coef-
ficients of equal powers of c to zero, one obtains a set of
linear constant-coefficient, second-order differential equa-
tions. The equation corresponding to c° coefficient is solved
to yield

= a0cos(p0T)+b0sin(p0T) (6)

where a0 and b0 are constants depending upon the initial
conditions of flexture. This is the zeroth-order solution. Using
this in the equation corresponding to c1 , one can determine
AH. For a uniformly valid expansion to exist at the primary
zone of resonance, p0 = !/z , the terms giving rise to secular
response in Au must vanish. Omitting the algebraic details,
this leads to the following expression, which is valid on the
transition curves:

(7a)

With these, the equation for A u is solved to give

(7b)

Following the same procedure, one determines A]2 from
the equation obtained by comparing coefficients of c2 and
using A10 and An. Invoking the condition of periodicity of
the solution A ]2 at p0 = l/2, yields

p2=p2-l/6K2-tf/4 (8)

Combining Eqs. (5), (7), and (8), we obtain the relation for
transition curves near the primary zone of resonance (p0 = J/2)
to the second order, as

p=Kj [ l/2 ± (c2/9K2 - ?/ (3K+2)c2/18K2 - 1(9)
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Fig. 1 Axes systems for gravity gradient satellite.

The right-hand side of Eq. (9) will have real values only if
c> l.5K£. This implies that the maximum level of disturbance
cmax that can be tolerated by the structure with stable flexural
motion near the primary resonance is

(10)

A more important quantity is the critical-damping necessary
to avoid vibrational instability for a given level of distur-
bance. This can be derived as

tc = c/(1.5K) (11)

Note that it is directly .proportional to the disturbance level
and inversely proportional to the inertia ratio.

For p0^!/2, it can be shown that the determinant of the
system formed for a0 and b0 in order to eliminate the secular
terms can never be equal to zero for any real values of f or p0.
This implies that there does not exist a stability boundary.
Thus, damping of the first order removes instability regions
near all other resonance conditions that may be present
otherwise. Incorporation of damping higher than first order
will at best show up transition curves defined by Eq. (9).
Therefore, it remains to investigate the effects of the second-
order damping given by f = c2 f7 . Following the same steps as
before, one obtains, forp0 = 1,

P]=0 and p2=2/27K2± [(3K+1)2/(1296K4)-4tf]l/2(\2)

Hence the stability boundaries near p0 = 1 are given by

•(13 + 9K)c2/(108K2)±[3K+l)2c2/(1296K4)

(13)

and the maximum tolerable disturbance level and the critical
damping at this resonance are given by

£c=(3K+l)c/(72K2) (15)

As expected, the critical damping requirement for the second
resonance is less than that for the primary resonance.
Proceeding further it is easy to show that the second-order
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Fig. 2 Stability of flexural vibration in circular orbits.

damping removes all resonances for p0 > 2 in the case of small
disturbances.

Attention is now drawn to find instability near the zone of
Po = 0. To this end, let •plK1 =p2c. With the first-order
damping, the stability boundary is now found to be

p=(y2-l/6K)'/2c (16)

Equation (16) implies that stability near p0 = 0 is not affected
by the presence of structural damping. The same conclusion is
reached even when the analysis includes full damping.
Discussion of the above transition curves and instability zones
is presented in a later section.

Flexural Response in Circular Orbit
Study of dynamic response of a flexible spacecraft is im-

portant. The technique used to find the stability domain gives
solutions only on the transition curves. To find the response
of the damped system within the stable region away from the
boundary, the multiple-scales technique13 is chosen. For this
purpose, let

62=p2/3K-(l+K)c2/6K2, f= f rc

and let the expansion representing the response be the
following function of different time scales TN:

A1(T,c)=A10(T0,Tj,T2)+cA1.1(T0,T],T2)

+ c2A]2(T0,T],T2) (17)

where TN = CNT, in which 7V=0,1,2,... are the new in-
dependent variables. Since the expansion up to second order
in c is considered to give a sufficiently accurate response, the
derivatives w.r.t. T can be written as

— =D0 + cD1+c2D2, DN=——
dr dTN

dr2 = D2
0+ 2cD0Dl + c2 ( D] + 2D0D2 (18)
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Substituting Eqs. (17) and (18) into Eq. (4) and equating the
coefficients of equal powers of c to zero, a set of linear
constant-coefficient, second-order differential equations is
obtained. For 5 away from zero, the solution of the equation
corresponding to the coefficient of c° can be conveniently
written as

where a0 and a0, complex conjugates to each other, are to be
determined as functions of T} and T2 constraining Au and
A12 to be periodic in T0. The right-hand side of the equation
for A n, obtained by comparing the coefficients of c, contains
secular terms. Using Eq. (19), it is found that, for 6 away
from 1A, the secular terms can be eliminated if,

(20)

With this, the particular solution for A-u can be written as

(21)

Substituting Eq. (21) into the equation corresponding to the
coefficients of c2 and eliminating secular terms for the
solution of A 12 for 5 away from unity, one gets

(22)

where a and b are now real constants to be determined from
the initial conditions. The particular solution of A12 is then
found as

(23)

where

Combining Eqs. (17), (19), (21), and (23) and expressing the
complex exponentials in the form of trigonometric functions,
the stable solution of Eq. (4) for 5 away from 0, l/i, and 1 is
given by
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Fig. 3 Stability of flexural vibration in elliptic orbits.

+ (3K(2b-l)]+\l/(3(2b+l)]

X c2cos[com 3 (26-7)}

l)}} (24)

om = 6-i2c2/[3K(462-l)l-f f2p2U6X8, which can
be termed as nondimensional mean frequency to the order of
c2 . The response contains sub- and superharmonics having the
dominant component of the mean frequency. It is also ob-
served that the solution exhibits an exponentially decaying
behavior. This is well known from the theory of linear
damped systems. Before discussing stability and response of
flexural motion in circular orbit, it is worthwhile completing
the analysis for systems in elliptic orbits.

Flexural Stability in Elliptic Orbits
It is well known that satellite librations in eccentric orbits

are more complicated than those in circular orbits.
Gyroscopic effects and eccentricity-induced forcing motion
give rise to a highly nonlinear dynamical system. Having
established the stability and response of in-plane flexural
motion in circular orbits, a similar approach is adopted for
elliptic orbits to investigate the effects of orbit eccentricity.
For small-amplitude libration, Eq. (2a) can be reduced to
the following well-known linearized equation of planar
libration14 :

Even for this simple equation there does not exist a closed-
form solution. For small-eccentricity orbits, an approximate
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solution14 obtained employing the Wentrel, Kramers,
Boillouin and Jeffereys (WKBJ) method is given by

61=FIsm(K10+F2)+eB]F1sin[(K1 + l ) 0 + F2]

+ eB2F1sm8-sin[(K1-l)8 + F2]

+2e[K]sin6-sm(K]0)]/[K1(3K-l)] (25)

where

Bl = - (1/6K+K] - 1/K1 +3/2) 14

B2 = - (l/6K-Kl+l/Kl +3/2)/4

F2
I=02

IO/f + 8'10
2/3Kf

F2=tan-7f [KI-e(l/K1+5K1/2)/2]0IO/f6'10}

f=l-e(5-l/3K)/4

Equation (25) shows that three additional frequency com-
ponents are now introduced due to the orbital eccentricity.
Neglecting terms of order e2, Eq. (2b) can be written as

-3d2
1)ecosO]Al=0

(26)
[ (p2 -26f

1-6f
1

2 -

Equation (26) represents the flexural vibration in the orbital
plane of a flexible spacecraft moving in an orbit of small
eccentricity and reduces to Eq. (4) for zero eccentricity.
Considering only impulsive disturbances for pitch motion
(F2 = 0), the substitution of Eq. (25) into Eq. (26) and sim-
plification lead to

+ [p2^cIc2-c2ccos(K]d)+c3c2cos(2KI0)

+ [c4c-(c5+4p2)cosd-c6ccos[(K}-l)d]

+ c7co$(K16)-c8ccos[(K1+l)d]

-c9ccos(2K1d)]e}A1=0 (27)

where

Cl = (l+K)/2KJ2',' c2=2/f; c3 = (l~K)/2Kf\

c4=2(l+K)/Kf(3K-l)\ cs=3(l+K)/(3K-l);

c6(c61+c62)/4K1f(3K-l); c7

c8=(-c6I+c62)/4KIf(3K-l);

c9=2(l-K)/Kf(3K-l);

c6l = (54K3 - 9K2 + 72K-1) /3K\

c62 = (-45K2+42K-l)/K}; c= 10

Occurrence of frequencies other than Kl due to the effect of
eccentricity indicates that the flexural motion will now find
many more resonance points than those in the case of circular
orbits. It is also to be noted, although not pursued here, that
the phase difference (F2^0) due to the initial librations
influences the stability and response of the flexural vibration.

Equation (27) represents an almost periodic time-varying
system and Floquet theory cannot be applied directly.

Reference 13 does not analyze such systems. For stability
analysis, the method of strained parameters is again followed
here. In addition to the expansions corresponding to Eq. (5),
define e—ejC and substitute them in Eq. (27) to obtain a set of
linear constant coefficient differential equations, p is defined
as

P=POe+PleC/2p0 +P2eC2/2p0

As before, the stability boundaries are then obtained by
establishing conditions to avoid secular terms in the solutions
of these equations. Without going into the details of the
algebra, the final results are presented below. Near the
resonance p0g = Vi, the transition curves are given by

p=(l-f)/2±l9(l+K)2e2/[(3K-l)2]

-?}'A/2+(3K+l)(l-K)c[c/2f-2e

- (3K-l)]/[Kf(3K-l)] + (297K3-81K2

-93K-35)e2/[8(3K-l)3] (28)

For small disturbances, this can be approximated to

p=1/2±{9(l+K)2e2/[(3K-l)2]-£2}'/2/2

Equation (28) yields the following formula for critical
damping:

tc=3(l+K)e/(3K-l) (29)

The fact that fc is independent of the disturbance level implies
that this instability zone is primarily due to the forced
libration in eccentric orbits .

Near the resonance p0e =K1/2, the transition curves are
given by

p = K1(l-{2)/2±l4[c/f-2e/(3K-l)]2-9K2{2}I/2/2K1

+ (3K+2)c[c/2f-2e/(3K-l)]/(3KK1f)

-81K4 + 162K3-45K2+33K+4)e2

(30)+ [6KK1(3K-1)3]

Owing to its negligible contribution, the last term can be
omitted. The critical damping is, therefore,

?c=±2[c/f-2e/(3K-l)]/3K (31)

Hence, fc depende upon K, c, and e\ the eccentricity
dependency arises mainly from the forced libration. It is
noted that the damping requirement to stabilize the vibrations
for a given level of disturbance is less than that required in the
circular orbit. Such a conclusion is not possible if the phase
difference of the initial libration is considered. For example,
if F2 = TT, the correct expression for p is obtained by putting
c= —c and this gives a higher value of fc. A unique feature of
this instability zone is that for a spacecraft with a finite
amount of damping, stability is insured only within the
following range of disturbance level:

[-3K&2 + 2e/(3K-l)]<c<
(32)

In the case of circular orbits, the lower limit reduces to zero.
Consequently, the region of vibrational instability is ex-
panded in the eccentric orbits.

Near the resonance p0e = 1 , the stability boundary and
critical damping are found to be
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+ (171K3-246K2 +27K-20)e2/ [4(3K~1)2 (3K-4)]

(33a)

fc=(735#2 + 5Ar.-7)£?2/[$(3A'-7)c] (33b)

For a given eccentricity fc is inversely proportional to c. This
peculiar property suggests a new type of instability domain
not found in the case of the Hill/Mathieu equation. The
instability is caused primarily by the forced libration in ec-
centric orbits and exists only for low levels of disturbances. At
higher disturbance levels, the effect of damping dominates.
Therefore, the lower the limit of disturbance beyond which
stability is desired, the higher is the requirement for damping
in a given orbit. Of course, as has been found earlier, first-
order damping removes the instability in this region.

Near the resonance conditions p0e = (K1 ± l)/2, the
transition curves are

p=(K,±l)/2+[2Kl(r+K)±(5K+l)][c/2f

± ( [ [ 1 62 K3 +9K2 + 1±K1( 99 K2 -6K-l)]c/(l 2Kf)

-4[(9K2+3)±2K](3K-l)]e

+ (3K-l)]2e2/[3(3K-l)2K]-(K]±l)4£2c2}I/2

-s- [2(Kj ±1) ] + [3(243K4+9K3 + 36K2 +K+3)

±2KI(81K4 + 189K3-45K2+27K+20)]e2/{2(3K-l)2

X[K1(21K+2)±3K(6K+7)]} (34)

In practice, the last term has negligible contribution and can
be omitted. Critical damping required to avoid this instability
zone can be obtained as

f c= ± ( [162K3 +9K2 + l±Kj (99K2 -6K-1) ]e/(12Kf)

-4[9K2+3±2K](3K-l)]e2/[(3K-l)c]}

1)] (35)

Orbit

Fig. 4 Response of flexural vibration in circular orbits.
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Fig. 5 Response of flexural vibration in elliptic orbits.

Except for the first one, all ± signs follow the value of p0e at
resonance. fc now has two components: one proportional to e
and the other to e2 /c. If the phase difference of the libration is
considered, fc will increase. This instability zone does not
occur in the case of circular orbit. Also, the first-order
damping removes this instability zone. For a given set of e, f,
and K, the range of c for which vibrational stability is
available can be obtained from

c = 4[(9K2+3)±2K1(3K-l)]e2/[(3K-l)[ [162K3

+ 9K2 + l±K}(99K2-6K-l)]e/(12Kf)

±{K1(K1±1)2(3K-1)]} (36)

The plus sign in front of fflf/ gives the lower limit, while the minus sign gives the upper limit; other signs are chosen according to
the resonance value of p0e.

Near the resonance p0e = K l y the transition curves correspond to

p = K1 + (13 + 9K)[c/2f-2e/(3K-l)]c/(18KK1f)^{(3K+l)2c4/(4f)+64e4/[(3K-l)4}-32(l+3K)e3c/[(3K-l)3f]

+ 12(3K+l)(K+l)e2c2/[(3K-l)2f]-2(3K+l)2ecJ/[(3K-l)f]-1296K4{2c2}'/2/(12KK])

+ [-1215K3+378K2-327K+16-108KKl(27K2-6K-l)}e2/[36KKl(l-12K)(3K-l)2} (37)
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The last expression and the second term under the square root are neglible. The critical damping for this zone is

$c = \(3K+l)2/(4f)+64e4/[(3K-l)4c4}-32(l+3K)e3/[(3K-l)3fc3}

+ 12(3K2+6K-l)e2/[(3K-l)2fc2]-2(3K+l)2e/[(3K-l)fc]}'/2c/(36K2) (38)

It is proportional to c and also a function of ( e / c ) . The case of circular orbit instability can be seen to be a special case of that in
the eccentric orbit. This instability zone too can be removed by incorporating damping of the first order.

Near p0e = 0 the stability boundary is found to be

(27K3-18K2-45K-16)e2/[6K(3K-l)2]}'/2 (39)

The term containing e2 can be neglected. As was the case for circular orbits, here too damping does not alter stability of vibration.
However, one finds that if c<4fe/ (3K— 1) for a given eor for a given level of disturbance c if e>(3K— l)c/4/, there does not exist
any instability. This, therefore, is the only case where orbital eccentricity is found to be aiding vibrational stability.

The instability zones discussed above are the only ones that occur in the case of elliptic orbits.

Flexural Response in Elliptic Orbits
Having established stability, analytical expressions for stable response are developed using the method of multiple scales. The

multiple-time scales are defined as 0N = cN6. Repeating the steps given in the case of circular orbit, the final result is found to be

-2

m-

(um+2)0-b]/[16(2p + l^

-2p + 2)e2cos[(um-2)e-b]/(16(2p-7)(p-l)]+X1cos[(um+KI+l)0-

+X3cos[(um-KI+l)0-b]+X4cos[(um-K1-l)0-b]+X5cos[(um+ (40)

where the constants X are related to the coefficients of Eq. (40) as

Xj = [(c2c-ec7)(c5+4p2 + 2p + 2Kj )/(8pKj + 12K) + (c2c-ec7) (c5+4p2 +2p)/ (8p + 4)-c8c/2]e/(2pK1+2p + 3K+l+2KI)

X2=[-(c2c-ec7)(c5+4p2-2p-2K])/(8pKJ+12K) + (c2c-ec7)(c5+4p2-2p)/(8p-4)+c6c/2

X3^[(c2c-ec7)(c5+4p2+2p-2Ki)/(8pK1-12K)-(c2c-ec7)(c5+4p2^2p)/(8p^4)+c6c/2]e/(2pK1-2p-3K-l+2Kl)

X4=[(c2c-ec7)(c5+4p2-2p + 2K1)/(8pK1-12k) + (c2c-ec7)(c5+4p2-2p)/(8p-4) +

X5=[(c2c-ec7)2/(4pK1+6K) + (c3c-ec9)c]/(8pK1+24K)

X6=[(c2c-ec7)2/(4pK1-6K)-(c3c-ec9)c]/(8pK1-24K)

and the mean frequency of response co/w is defined as

(41)

The response in the circular orbit is seen to be a special case of
Eq. (40). Note that in this case <5 is not defined. The present
response contains components of 12 frequencies that are
functions of librational frequencies. Presence of the sine
function is indicative of the influence of gyroscopic motion
due to eccentricity. As may be expected, structural damping is
solely responsible for decaying vibration. Only amplitudes
corresponding to the frequencies that are functions of K1
depend on the disturbance. The other frequencies, except the
mean frequency, have amplitudes directly resulting from the
eccentricity-induced forced libration. In spite of a complex
combination of a set of cosine and sine functions in the
response expression, one can, in principle, find the maxima
and their time of occurrence by solving a transcendental
equation. This is not pursued here.

Parametric Study
Stability of Flexural Vibration

The results of the foregoing stability analysis in circular
orbit are presented in Fig. 2 on thep-c plane for certain ranges
of parameters. Unlike the plots given in Ref. 8, the ones

presented here lend themselves to a direct interpretation. The
instability zones near frequencies p = 0, K j / 2 , and Kl are
shown as three distinct regions separated by the stable
regions. They are bounded by two curves, the upper one
corresponding to the plus sign and the lower to the minus sign
in the equations for the stability boundaries. Near the zero
frequency, the lower boundary is given by the line p = 0
because p cannot take negative values. The point of in-
tersection of the lower and upper boundaries is strongly
dependent on the inertia ratio and the damping factor. It
establishes (except near the zero frequency instability zone)
the stability of all structural modes for a level of disturbance.
For example, a spacecraft with K = 0.98 and f = 0.01 (Fig. 2a),
all structural modes having frequencies/?>A^/2 are stabilized
against disturbances of c<0.025. If the structure's fun-
damental frequency is given by p>KIt the maximum
disturbance tolerable from Fig. 2a is c = 0.175. High-
frequency modes, therefore, enjoy high degrees of stability.
One is led to the same conclusion if one examines the critical
damping required to stabilize a particular mode. For K=0.98,
cmax =0.5, the critical damping for modes having frequencies
p-K} is fc = 0.028 and, this being less than ^=0.05, the
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instability region near p=K1 is absent in Fig. 2b. As one
approaches modes of lower frequency, the value of critical
damping increases, ending with the absence of influence of
damping on extremely low-frequency modes near p — Q. A
comparison of Figs. 2c and 2d indicates that decreasing K
shifts the instability regions to lower frequencies. For a given
space structurepa (orbital radius)1'5, therefore, high-altitude
orbits offer a greater chance of elastic stability for the
satellite.

Stability charts (Fig. 3) of flexural vibration in elliptic orbit
show up more instability zones in addition to those occurring
near frequencies of 0, K1I2, and K1 in circular orbit. These
occur near the frequencies (KL -1)/2, »/2, (K; +1)/2, and 1.
Equations representing their boundaries are more com-
plicated. Although their width is comparatively small, they
make the structure unstable to a higher degree, narrowing the
choice of frequencies of stable structural modes within the
expected range of disturbance levels. For a satellite of K =0.9
and e = 0.01, increasing f to 0.02 (Fig. 3b) removes the in-
stability zone near the frequency (Kj +1)/2 and shortens the
line near frequencies (K1 - l)/2 and 1. The line results from
the very small width of the unstable region. The regions near
P—KI 3.ndp=Kj 12 become more stable against disturbances.
The unstable zone near p = Vi remains practically unchanged.
The region near p = 0 does not depend on damping. Increasing
f to 0.05 (Fig. 3c) removes all unstable regions except those
near p=Kj/2 and 0.

It was shown earlier that the critical damping for all in-
stability zones depends on the eccentricity. To see its
dependence on the external disturbance, -log/0fc is plotted
against c for K=Q.9 and e = 0.01 (Fig. 3d). In this case, for
disturbance level c>0.015, the maximum value of fc
corresponds to that given for the instability zone near
p=Kj/2. For c<0.015, fcmax is given by the instability zone
near p=(Kl-\)/2. Incorporation of structural damping
more than the maximum critical damping stabilizes all
structural modes. In general, as pointed out earlier, fc for
frequencies K j / 2 , (Kt -1)/2, (KL +1)/2, and AT, depend on
the phase of the initial libration and the worst case would
correspond to either 0 or TT. This is not pursued further here.

The effect of eccentricity on stability can be observed by
comparing Figs. 3a, 3e, and 3f. For higher values of ec-
centricity, stable gaps in the unstable regions near
p= (Kj +1)/2, and K}/2 are noticed. The instability zones
near p = Q and Kl are also reduced. Since the instability near
frequencies 1 and !/2 is mainly caused by the eccentricity-
induced librations, the corresponding unstable zones are
widened for large eccentricity. The instability zones can
overlap, modifying the stability boundaries (Fig. 3f)-

Figures 3g and 3h present stability plots on the p-e plane.
Generally, as eccentricity increases, the stable regions
diminish rapidly. In the absence of any external disturbance,
the modes near p = 0 are never destabilized. Modes of other
frequencies exhibit a trend of instability similar to the effects
of external disturbances on vibrations. It is interesting to note
that the imposition of external disturbance on the eccentricity-
induced motion can improve the stability characteristics (Fig.
3h). Although instability is noticed near extremely low
frequencies, i.e., p = 09 external disturbances improve stability
around the regions of p= (Kj -l)/2, 1, (Kt + l)/2, and Kl.
This stabilization actually results from a favorable phase
difference existing during the motion initiated by the vehicle
pitching. Despite the important role played by the vehicle
inertia ratio in determining critical damping, it exerts little
influence on the width of the instabilizy zones.

Response of Flexural Vibration
Stable flexural response over 13 orbits for typical sets of

parameters for gravity-stabilized satellites in circular and
elliptic orbits are presented in Figs. 4 and 5, respectively, The
values are nondimensionalized with respect to the initial
modal displacement Ad and only, impulsive disturbances have

been considered in pitch plane with d2=Q. The plots are
obtained using the analytical solutions derived earlier. The
correctness of the solution is established by the numerical
solution of the modal equation using the Runge-Kutta
algorithm.

Figure 4a compares the low-frequency response to a small
disturbance for three combinations of the inertia ratio and
damping parameter. Reduction of the value of the inertia
ratio by nearly 20 % alters the response only slightly. For the
low-frequency response, a high value of damping is needed to
damp the motion within a reasonable time. For high-
frequency response (Fig. 4b), the damping is quite effective
and the system is able to withstand much larger disturbances.
Low-frequency behavior is, therefore, a source of greater
concern.

Typical response in elliptic orbits are presented in Fig. 5.
Since a higher degree of instability exists in eccentric orbits,
vibration response is investigated only for small external
disturbances of c = 0.15. The gyroscopic nature of the
libration introduced by the orbit ellipticity seems initially to
distort the response. In the long run, the behavior is essen-
tially similar to that predicted for the circular orbits. It may
be noted that a large eccentricity (Fig. 5b) has appreciable
influence on the response. It increases the magnitude and
delays the occurrence of the maximum of modal amplitude.
The effectiveness of damping is somewhat reduced in ec-
centric orbits. The modal response characteristics, such as the
time period, magnification factor, logarithmic decrement of
the flexural vibration, are not easily obtainable. For com-
parison, one case of high-frequency response (Fig. 5a) is
included here. These results are also checked with the
numerical solution of the modal equation.

Although only a few typical plots are included, they are
sufficient to indicate the stable behavior of the system.

N Conclusion
The present work is concerned with the analysis of in-plane

flexural vibration of large, flexible, damped satellites un-
dergoing pitching oscillations in circular and elliptic orbits.
The analysis is directly applicable to beam- and plate-like and
cable-connected space systems. The modal equations are
found to be periodic for satellites moving in circular orbits
and almost periodic for those moving in elliptic orbits.
Successful application of perturbation techniques made it
possible to obtain analytical expressions for stability boun-
daries and stable solutions of vibration. In the presence of
structural damping, one finds that, although there are
primarily two resonant frequencies in circular orbits, there are
as many as six resonant frequencies in elliptic orbits. It is
important to note that p= 1 is a resonant trequency in the
elliptic orbit and not in the circular orbit. An equally im-
portant conclusion is that the vehicle inertia ratio does not
significantly influence the stability boundaries or the solution,
but it is a crucial parameter in determining the critical
damping.

Finally, a comment on multimode vibration is in order
here. The actual deflection curve of the structure at any in-
stant is due to the superposition of a finite number of modes
taking part in the vibration. Therefore, the vibrational in-
stability can be caused by the instability of any one of these
modes, implying that in a given orbit any p should not lie in
any of the unstable regions. It may be pointed out that,
although the present solution for Al has been shown to be
exact solution of the approximate equation, one has to verify
their applicability to multimode vibration based on an ex-
tensive numerical computation of the original set of hybrid
differential equations obtained for specific structures.

The analysis presented here is applicable to a wide range of
system parameters. The analytical expressions and the
stability charts should prove valuable to designers of future
large-scale spacecraft.
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